Что представляет собой бета-излучение и способы защиты от него


Открытие радиоактивности и его необычных свойств породило в учёном мире огромный интерес и вызвало множество вопросов. Прорывом в изучении этого явления стал классический опыт английского учёного Э. Резерфорда, поместившего радиоактивный излучатель в магнитное поле. К удивлению экспериментаторов, радиоактивный пучок разделился на 3 части. Лучи, испытавшие минимальное отклонение, были названы — альфа-лучами.

Что собой представляет альфа-излучение? Чем оно стало для человечества — другом, помощником или врагом? Какой от него вред и как защититься от альфа-излучения?

Содержание

Что такое альфа-излучение и особенности

Чтобы понять, что такое альфа-радиация, нужно изучить особенности этого излучения.

Поток состоит из частиц, обладающих такими свойствами:

  1. Достаточно низкая стартовая скорость. Большая относительная масса негативно снижает способность частиц к движению.
  2. Способность к созданию 200000 пар ионов в 1 см³ вещества. Подобное возможно при соблюдении некоторых условий: отсутствие преград на пути движения, средняя температура воздуха +15°С, нормальное атмосферное давление.
  3. Небольшая продолжительность жизни. Связано это с тем, что ионизация требует больших энергетических затрат. При снижении скорости перемещения ионизирующая способность частицы резко возрастает.
  4. Путь движения частиц по воздуху, не превышающий 11 см (при благоприятных условиях). Жидкие и твердые среды препятствуют распространению альфа-лучей. Здесь они не могут пройти даже 1 мм.

Бета-распад

В процессе бета-распада ядро испускает электрон. Вообще существование в ядре электрона невозможно, т.е. появление электрона – лишь результат β-распада, сопровождающегося превращением нейтрона в протон. Такой процесс происходит как внутри ядра, так и со свободными нейтронами. Среднее время жизни свободного нейтрона равно примерно 15 минутам. При радиоактивном распаде нейтрон n01 превращается в протон p11 и электрон e-10.

В результате измерений было выявлено, что при бета-распаде наблюдается кажущееся нарушение закона сохранения энергии, поскольку суммарно энергия протона и электрона, появившихся при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули предположил выделение при распаде нейтрона еще одной частицы с нулевыми значениями массы и заряда, уносящей с собой часть энергии.

Определение 6

Нейтрино (маленький нейтрон) – частица с нулевыми значениями массы и заряда, возникающая при распаде нейтрона. Была открыта в 1953 году.

Нейтрино плохо взаимодействует с атомами вещества, поскольку не обладает зарядом и массой, и вследствие этого ее обнаружение в ходе эксперимента очень затруднительно. Ионизирующая способность нейтрино является настолько малой, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. На данный момент известно, что существует несколько типов нейтрино.

Определение 7

Электронный антинейтрино – частица, возникающая вследствие распада нейтрона и обозначаемая ve~00.

Мы помогаем студентам с дипломными, курсовыми, контрольными Узнать стоимость

Запись реакции распада нейтрона выглядит так:

n01→p11+e-10+ve~00

Те же явления происходят внутри ядер при β-распаде. При распаде одного их ядерных нейтронов образуется электрон, сразу же выбрасываемый из «родительского дома» (ядра) с очень большой скоростью, отличающейся от скорости света на небольшую долю процента. Поскольку распределение энергии, выделяющейся при β-распаде, между электроном, нейтрино и дочерним ядром имеет случайный характер, β-электроны способны обладать разными скоростями в широком интервале значений.

β-распад сопровождается увеличением зарядового числа Z на единицу при неизменности массового числа A

. Дочернее ядро в данном случае есть ядро одного из изотопов элемента, чей атомный номер в периодической системе Менделеева на единицу превышает атомный номер исходного ядра. В качестве характерного примера β-распада можно рассмотреть преобразование изотона тория Th90234, возникающего при α-распаде урана U92238, в протактиний Pa91234:

Th90234→Pa91234+e-10+ve~00

Совместно с электронным β-распадом было определено такое явление, как позитронный β+-распад: ядро испускает позитронe+10 и нейтрино ve00.

Определение 8

Позитрон является частицей-двойником электрона, отличающейся от него лишь знаком заряда.

Существование позитрона предсказывалось еще в 1928 г. великим физиком П. Дираком. Спустя несколько лет позитрон обнаружили, как составляющую космических лучей. Позитроны возникают в результате реакции преобразования протона в нейтрон по следующей схеме:

p11→n01+e10+ve00

Виды излучения

Существуют такие типы радиационного излучения:

  1. Альфа. Состоит из массивных, положительно заряженных ядер атомов гелия. Возникает при распаде сложных химических элементов, например тория или урана. При контакте с веществом начинается взаимодействие, при котором частицы теряют большую часть энергии. Из-за небольшой проникающей способности излучение задерживается простым листом бумаги. Альфа-лучи разрушают клетки живого организма, вызывая опасные последствия.
  2. Бета. Образуется на стадии превращения одного атома в другой. Скорость частиц приближена к световой, что придает им высокую проникающую способность. Показатель ионизации ниже, чем у альфа-лучей. Бета-радиация не задерживается одеждой и кожей человека. При прохождении через металлический лист часть энергии теряется. Бета-излучение наносит вред организму, находящемуся на расстоянии 100 м от источника.
  3. Нейтронное. Возникает в атомных реакторах или после взрыва ядерной бомбы. Такая радиация исходит от звезд, где протекают бурные термоядерные реакции. При взаимодействии с веществом практически не изменяет структуру атомов, однако проникающая способность считается высокой. Нейтронная радиация задерживается водой или полиэтиленом. Излучение также может нанести вред животным, человеку и растениям.
  4. Гамма. Состоит из фотонов, образуется при распаде атомов радиоактивного вещества. Частицы перемещаются со скоростью света. Высокая проникающая способность позволяет преодолевать металлические или бетонные препятствия. Гамма-частицы слабо взаимодействуют с веществом. Главная опасность заключается в способности перемещаться на большие расстояния.
  5. Рентгеновское. Состоит из фотонов и возникает при перемещении электрона с одной орбиты атома на другую. Способность к проникновению в ткани ниже, чем у гамма-частиц. Объясняется это большей длиной волны.

Характерные свойства

Читать также Бета-излучение: описание, источники и меры защиты

Энергия излучения расходуется на получение ионов из атома. Его лучи, продвигаясь даже на 10 мм в воздухе, формируют около 30 000 пар ионов. Именно из-за способности к ионизации альфа-лучи в окружающей среде распространяются не больше чем на 11 см. А в твердых веществах излучение углубляется лишь на сотую долю миллиметра. При этом радионуклиды плутония и урана почти не могут перемещаться по тканям организма человека. Обыкновенная майка или бумажный лист — это непреодолимые препятствия для них.

Основные источники

Главными источниками альфа-радиации являются:

  1. Образование изотопов гелия. Наблюдается при распаде тяжелых атомов.
  2. Межзвездный газ. Образуется при увеличении скорости движения ядер гелия в космосе. Эти частицы пытаются преодолеть силу притяжения.
  3. Научные эксперименты. Опыты проводятся с использованием ускорителей в лабораторных условиях. Аппаратура вырабатывает излучение с нужными характеристиками.
  4. Промышленность. Источниками становятся объекты атомной энергетики и урановой индустрии.

Принцип работы счетчиков Гейгера

Это электровакуумный прибор с предельно простым принципом работы. Датчик радиоактивных излучений представляет собой металлическую или стеклянную камеру с металлизацией, заполненную разряженным инертным газом. По центру камеры располагают электрод. Внешние стенки камеры подключают к источнику высокого напряжения (обычно 400 вольт). Внутренний электрод — к чувствительному усилителю. Ионизирующие излучения (радиация) представляют собой поток частиц. Они буквально переносят электроны от высоковольтного катода в нити анода. На ней просто наводится напряжение, которое можно уже измерить, подключив к усилителю.

Высокая чувствительность счетчика Гейгера обусловлена лавинообразным эффектом. Энергия, которую регистрирует усилитель на выходе, — это не энергия источника ионизирующего излучения. Это энергия высоковольтного блока питания самого дозиметра. Проникшая частица только переносит электрон (энергетический заряд, который превращается в ток, регистрируемый измерителем). Между электродами введена газовая смесь, состоящая из благородных газов: аргона, неона. Она призвана гасить высоковольтные разряды. Если возникнет такой разряд, то это будет ложное срабатывание счетчика. Последующая измерительная схема игнорирует такие выбросы. Кроме того, высоковольтный блок питания тоже должен быть от них защищен.

Схема питания в счетчике Гейгера обеспечивает ток на выходе в нескольких микроампер при выходном напряжении 400 вольт. Точное значение напряжения питания устанавливается для каждой марки счетчика по его технической спецификации.

Воздействие альфа-излучения

Радиация негативно воздействует не только на организм человека и животных, но и на некоторые виды электронной аппаратуры.

На человека

Ионизируя атомы, альфа-частицы быстро растрачивают энергию. Ее бывает недостаточно даже для проникновения сквозь верхние слои кожи человека. Риск развития лучевой болезни при внешнем контакте с источником альфа-излучения минимален.

Получаемые с помощью ускорителей лучи обладают большим запасом энергии. Не менее опасными являются элементы, образуемые при распаде радионуклидов. Попадание в дыхательную или пищеварительную систему приводит к острой лучевой болезни, заканчивающейся летальным исходом.

На электронную аппаратуру

В полупроводниках потоки частиц образуют электронно-дырочные пары. Это приводит к нарушению работы электронных приборов. Для предупреждения таких последствий при изготовлении микросхем используют материалы, не взаимодействующие с лучами.

Влияние на человеческий организм

Интенсивная ионизация способствует тому, что мощный энергетический поток, исходящий из источника, за короткий промежуток времени становится очень слабым. Из-за такой потери энергоресурса поражающая способность альфа-излучения становится крайне незначительной. Оно не в силах даже пройти сквозь омертвевшие кожные клетки, потому оно безопасно для организма при внешнем воздействии.

При использовании ускорителя его влияние уже может представлять опасность. Частички излучения мгновенно расщепляются на нуклиды, которые уже способны навредить здоровью. Оказавшись внутри организма через ЖКТ или дыхательные органы, доза радиации способна вызвать лучевую болезнь.

Из этого можно сделать вывод, что это облучение может представлять опасность лишь при попадании в открытые раны. Оказавшись внутри организма, частички существенно ускоряют деление клеток, что способствует изменению информации в генах, мутациям и формированию злокачественных опухолей. А при наличии лучевой болезни гибель неизбежна.

Область применения

Применение альфа-частиц в мирных целях практикуется давно.

Свойства лучей позволяет использовать их в таких сферах медицины:

  1. Физиотерапия. Ванны и аппликации с радоном способствуют улучшению общего состояния организма. Торон и радон, являющиеся слаборадиоактивными изотопами, быстро распадаются и выводятся, не поражая ткани.
  2. Онкология. Альфа-частицы перемещаются, не отклоняясь, что позволяет им воздействовать только на опухоль. При точечном облучении требуется меньшее количество процедур. Вероятность появления побочных эффектов в этом случае минимальна. Терапия избавляет от болевых ощущений и признаков воспаления, возникающих при распространении раковых клеток.
  3. Гинекология и кардиология. Альфа-терапия используется в лечении инфекционно-воспалительных процессов. При проведении терапии нужно правильно рассчитывать допустимые дозы и принимать во внимание возможность возникновения побочных эффектов.

Действие

Практическое применение бета-излучения

Основным спектром использования такого типа радиоактивного излучения выступает медицина. Речь идет о специфичном направлении терапевтической области действия, а также диагностике радиоизотопного формата.

Практическое применение предусматривает следующие аспекты:

  • Терапевтические цели. Предусматривается наложение на пораженные участки особенных аппликаторов, которые излучают нужные для лечения лучи.
  • Лечение злокачественных опухолей. Для этого используются терапия внутритканевой и внутриполостной категории. Полезный эффект достигается за счет разрушительного воздействия излучения на измененные клетки.
  • Диагностика радиоизотопного вида. Метод предполагает использование бета-частиц для создания радиоактивной метки, чтобы обнаружить возможные опухолевые ткани.

Помимо медицинского сегмента эксплуатации облучения из этой гаммы также применяет в химической промышленности и при контроле разных процессов автоматического типа. Можно встретить бета-облучение даже при ремонте транспортных средств. Взяли на вооружение эти лучи и археологи. Они с их помощью могут более точно определить возраст горных пород.

Способы защиты от альфа-излучения

Методы защиты подбирают с учетом особенностей лучей. В человеческий организм они проникают на небольшую глубину. Такое правило действует только внешнем облучении. Если частицы попадают с пищей или через дефекты кожного покрова, возникают негативные последствия. Развивается тяжелое отравление массивными элементами, образующими свободные атомы кислорода и водорода. Частицы поражают железы внутренней секреции и костный мозг.

Защититься от внешнего облучения помогает увеличение расстояния между человеком и источником радиации до 5 м.

Если это невозможно, используют такие средства:

  • листы бумаги;
  • ткани;
  • тонкие алюминиевые пластины.

Хорошим средством защиты становится плотная одежда, покрывающая все тело. Сложнее снизить риск внутреннего облучения.

В этом случае применяют такие средства:

  • одежда, изготавливаемая из специальных материалов;
  • защитные очки из оргстекла;
  • дерматологические составы, защищающие поврежденную кожу.

Ускорить процесс выведения радиоизотопов из организма помогает употребление продуктов, содержащих витамины В и С, например перепелиные яйца. Они содержат аминокислоты, нейтрализующие опасное влияние радиации. Теми же свойствами обладает топинамбур, не накапливающий радионуклидов.

Меры защиты

Проживающие в нормальных условиях люди не нуждаются в специальных средствах защиты организма от бета-лучей. Профилактика лучевой болезни требуется работникам некоторых отраслей, контактирующим с радиоактивными веществами. Чтобы минимизировать опасность для здоровья, используют целый комплекс мер.

Способы защиты

Перечень включает:

  1. Использование радиопротекторов. Они представляют собой вещества, нейтрализующие влияние бета-частиц. Препараты вводят до посещения опасных зон. Выпускаются они в виде пищевых добавок и растворов для инъекций.
  2. Нахождение на безопасном расстоянии от источника. Выраженность облучения снижают, удаляясь на 1-2 км.
  3. Установление временных рамок. Необходимо снижение длительности работ в зараженных зонах.
  4. Применение защитных средств. Задерживают лучи стеклянные, металлические или плексиглассовые экраны. Попаданию частиц в дыхательную систему препятствуют противогазы.
  5. Контроль. Подразумевает регулярное измерение радиационного фона местности.

Если человек получил облучение, такие мероприятия оказываются неэффективными. В этом случае покидают зараженную местность, избавляются от одежды и обуви. Кожу промывают проточной водой с мылом. Это снижает риск возникновения радиационных ожогов.

Единицы измерения радиоактивности

Однако в чем измеряется эта величина? Измерение радиоактивности позволяет выразить интенсивность распада в цифрах. Единица измерения активности радионуклида – беккерель. 1 беккерель (Бк) означает, что 1 распад происходит в 1 сек. Когда-то для этих измерений использовалась гораздо более крупная единица измерения – кюри (Ки): 1 кюри = 37 млрд беккерелей.
Естественно, сопоставлять необходимо одинаковые массы вещества, например 1 мг урана и 1 мг тория. Активность взятой единицы массы радионуклида называется удельной активностью. Чем больше период полураспада, тем меньше удельная радиоактивность.

альфа бета и гамма частицы

Долгоживущие и короткоживущие радионуклиды

Альфа-, бета- и гамма-излучения сопровождают процесс распада атомного ядра. Что такое период полураспада? Ядра радионуклидов не являются стабильными – этим они и отличаются от других устойчивых изотопов. В определенный момент запускается процесс радиоактивного распада. Радионуклиды при этом превращаются в другие изотопы, в процессе чего испускаются альфа-, бета- и гамма-лучи. Радионуклиды имеют разный уровень нестабильности – некоторые из них распадаются в течение сотен, миллионов и даже миллиардов лет. К примеру, все изотопы урана, которые встречаются в природе, являются долгоживущими. Есть и такие радионуклиды, которые распадаются в течение секунд, дней, месяцев. Они зовутся короткоживущими.

Выброс альфа-, бета- и гамма-частиц сопровождает не любой распад. Но на самом деле радиоактивный распад сопровождается только выбросом альфа- или бета-частиц. В некоторых случаях этот процесс происходит в сопровождении гамма-лучей. Чистое гамма-излучение в природе не встречается. Чем больше скорость распада радионуклида, тем выше его уровень радиоактивности. Некоторые считают, что в природе существует альфа-, бета-, гамма- и дельта-распад. Это неверно. Дельта-распада не существует.

альфа бета гамма дельта

Самодельные дозиметры, зачем они нужны?

Счетчик Гейгера является специфическим элементом дозиметра, совершенно недоступным для самостоятельного изготовления. Кроме того, он встречается только в дозиметрах или продается отдельно в магазинах радиотоваров. Если этот датчик есть в наличии, все остальные компоненты дозиметра могут быть собраны самостоятельно из деталей разнообразной бытовой электроники: телевизоров, материнских плат и др. На радиолюбительских сайтах, форумах сейчас предлагается около десятка конструкций. Собирать стоит именно их, поскольку это самые отработанные варианты, имеющие подробные руководства по настройке и наладке.

Схема включения счетчика Гейгера всегда подразумевает наличие источника высокого напряжения. Типичное рабочее напряжение счетчика — 400 вольт. Его получают по схеме блокинг-генератора, и это самый сложный элемент схемы дозиметра. Выход счетчика можно подключить к усилителю низкой частоты и подсчитывать щелчки в динамике. Такой дозиметр собирается в экстренных случаях, когда времени на изготовление практически нет. Теоретически, выход счетчика Гейгера можно подключить к аудиовходу бытовой аппаратуры, например, компьютера.

Самодельные дозиметры, пригодные для точных измерений, все собираются на микроконтроллерах. Навыки программирования здесь не нужны, так как программа записывается готовой из бесплатного доступа. Сложности здесь типичные для домашнего электронного производства: получение печатной платы, пайка радиодеталей, изготовление корпуса. Все это решается в условиях небольшой мастерской. Самодельные дозиметры из счетчиков Гейгера делают в случаях, когда:

  • нет возможности приобрести готовый дозиметр;
  • нужен прибор со специальными характеристиками;
  • необходимо изучить сам процесс постройки и наладки дозиметра.

Самодельный дозиметр градуируется по естественному фону с помощью другого дозиметра. На этом процесс постройки заканчивается.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Индивидуальный дозиметр с счетчиком Гейгера

Этот класс приборов обладает высокой чувствительностью в отличие от устаревших моделей с ионизационными камерами. Надежные модели предлагаются многими отечественными , «МКС-05», «ДКР», «Радэкс», «РКС». Это все автономные приборы с выводом данных на экран в стандартных единицах измерения. Есть режим показания накопленной дозы облучения, так и мгновенного уровня фона.

Перспективное направление — бытовой дозиметр-приставка к смартфону. Такие устройства выпускают зарубежные производители. У них богатые технические возможности, есть функция хранения показаний, калькуляции, пересчета и суммирования излучения за дни, недели, месяцы. Пока что из-за низких объемов производства стоимость этих приборов довольно высокая.

Как влияет излучение на человека

Каким же образом бета излучение влияет на человеческий организм? Что в нем происходит под действием таких лучей?

В виду способности проникать в кожные покровы, бета излучение, попадая на них, становится причиной довольно сильных ожогов. При этом чем длиннее период нахождения под лучами, тем сильнее будет ожог. Особенно это касается открытых участков тела и слизистых оболочек.

Однако гораздо хуже, когда β-частицы проникают внутрь организма. Как и при любом другом виде излучения, сначала происходит повреждение клеток, а затем они просто погибают. При этом образуются токсические вещества, которые оказывают губительное влияние на весь организм в целом. Итогом может стать летальный исход.

При получении небольшой дозы облучения человек может сразу и не заметить негативных симптомов, однако бета частицы имеют свойство накапливаться в организме и разрушать его постепенно. Более того, некоторые из них распадаются довольно долгое время, и весь этот период негативно влияют на организм.

Возможности счетчиков Гейгера, чувствительность, регистрируемые излучения

С помощью счетчика Гейгера можно зарегистрировать и с высокой точностью измерить гамма- и бета-излучение. К сожалению, нельзя распознать вид излучения напрямую. Это делается косвенным методом с помощью установки преград между сенсором и обследуемым объектом или местностью. Гамма-лучи обладают высокой проницаемостью, и их фон не меняется. Если дозиметр засек бета-излучение, то установка разделительной преграды даже из тонкого листа металла почти полностью перекроет поток бета-частиц.

Распространенные в прошлом комплекты индивидуальных дозиметров ДП-22, ДП-24 не использовали счетчиков Гейгера. Вместо них там использовался сенсор ионизационная камера, поэтому чувствительность была очень низкой. Современные дозиметрические приборы на счетчиках Гейгера обладают в тысячи раз большей чувствительностью. С помощью них можно регистрировать естественные изменения солнечного радиационного фона.

Примечательная особенность счетчика Гейгера — чувствительность, в десятки и сотни раз превышающая необходимый уровень. Если в совершенно защищенной свинцовой камере включить счетчик, то он покажет огромный естественный радиационный фон. Эти показания не являются дефектом конструкции самого счетчика, что было проверено многочисленными лабораторными исследованиями. Такие данные — следствие естественного радиационного космического фона. Эксперимент только показывает, насколько чувствительным является счетчик Гейгера.

Специально для измерения этого параметра в технических характеристиках указывается значение «чувствительность счетчика имп мкр» (импульсов в микросекунду). Чем больше этих импульсов — тем больше чувствительность.

Измерение радиации счетчиком Гейгера, схема дозиметра

Схему дозиметра можно разделить на два функциональных модуля: высоковольтный блок питания и измерительная схема. Высоковольтный блок питания — аналоговая схема. Измерительный модуль на цифровых дозиметрах всегда цифровой. Это счетчик импульсов, который выводит соответствующее значение в виде цифр на шкалу прибора. Для измерения дозы радиации необходимо подсчитать импульсы за минуту, 10, 15 секунд или другие значения. Микроконтроллер пересчитывает число импульсов в конкретное значение на шкале дозиметра в стандартных единицах измерения радиации. Вот самые распространенные из них:

  • рентген (обычно используется микрорентген);
  • Зиверт (микрозиверт — мЗв);
  • Бэр;
  • Грей, рад,
  • плотность потока в микроваттах/м2.

Зиверт — наиболее популярная единица измерения радиации. К ней соотнесены все нормы, никаких дополнительных пересчетов проводить не требуется. Бэр — единица для определения влияния радиации на биологические объекты.

Сравнение газоразрядного счетчика Гейгера с полупроводниковым датчиком радиации

Счетчик Гейгера является газоразрядным прибором, а современная тенденция микроэлектроники — повсеместное от них избавление. Были разработаны десятки вариантов полупроводниковых сенсоров радиации. Регистрируемый ими уровень радиационного фона значительно выше, чем для счетчиков Гейгера. Чувствительность полупроводникового сенсора хуже, но у него другое преимущество — экономичность. Полупроводникам не требуется высоковольтного питания. Для портативных дозиметров с батарейным питанием они хорошо подходят. Еще одно их преимущество — регистрация альфа-частиц. Газовый объем счетчика существенно больше полупроводникового сенсора, но все равно его габариты приемлемы даже для портативной техники.

Какие радионуклиды представляют собой большую опасность?

Это достаточно провокационный вопрос. С одной стороны, более опасными являются короткоживущие, ведь они более активны. Но ведь после их распада сама проблема радиации теряет актуальность, в то время как долгоживущие представляют опасность в течение многих лет.

Удельную активность радионуклидов можно сравнить с оружием. Какое оружие будет более опасным: то, что делает пятьдесят выстрелов за минуту, или то, что стреляет один раз в полчаса? На этот вопрос ответить нельзя – все зависит от того, каков калибр оружия, чем оно заряжено, долетит ли пуля до цели, каким будет повреждение.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий